Extensions 1→N→G→Q→1 with N=C2 and Q=C42.28C22

Direct product G=N×Q with N=C2 and Q=C42.28C22
dρLabelID
C2×C42.28C2264C2xC4^2.28C2^2128,1864


Non-split extensions G=N.Q with N=C2 and Q=C42.28C22
extensionφ:Q→Aut NdρLabelID
C2.1(C42.28C22) = C42.24Q8central extension (φ=1)128C2.1(C4^2.28C2^2)128,568
C2.2(C42.28C22) = C2.(C8⋊D4)central extension (φ=1)128C2.2(C4^2.28C2^2)128,667
C2.3(C42.28C22) = C2.(C82D4)central extension (φ=1)64C2.3(C4^2.28C2^2)128,668
C2.4(C42.28C22) = C42.110D4central extension (φ=1)64C2.4(C4^2.28C2^2)128,691
C2.5(C42.28C22) = C42.125D4central extension (φ=1)128C2.5(C4^2.28C2^2)128,725
C2.6(C42.28C22) = (C2×D4)⋊Q8central stem extension (φ=1)64C2.6(C4^2.28C2^2)128,755
C2.7(C42.28C22) = (C2×Q8)⋊Q8central stem extension (φ=1)128C2.7(C4^2.28C2^2)128,756
C2.8(C42.28C22) = C4⋊C4.94D4central stem extension (φ=1)64C2.8(C4^2.28C2^2)128,774
C2.9(C42.28C22) = (C2×C4).24D8central stem extension (φ=1)64C2.9(C4^2.28C2^2)128,803
C2.10(C42.28C22) = (C2×C4).19Q16central stem extension (φ=1)128C2.10(C4^2.28C2^2)128,804
C2.11(C42.28C22) = C4⋊C4.Q8central stem extension (φ=1)128C2.11(C4^2.28C2^2)128,833

׿
×
𝔽